In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography.
نویسندگان
چکیده
OBJECTIVE Cardiac tissue engineering has been proposed as a treatment to repair impaired hearts. Bioengineered cardiac grafts are created by combining autologous cell transplantation with a degradable scaffold as a temporary extracellular matrix. Here we present a system for engineered myocardium combining cultured cardiomyocytes and a novel biodegradable scaffold with a unique extracellular matrix-like topography. METHODS Cardiomyocytes were harvested from neonatal rats and cultured in vitro on biodegradable electrospun nanofibrous poly(epsilon-caprolactone) meshes. Between days 5 and 7, the meshes were overlaid to construct 3-dimensional cardiac grafts. On day 14 of in vitro culture, the engineered cardiac grafts were analyzed by means of histology, immunohistochemistry, and scanning electron microscopy. RESULTS The cultured cardiomyocytes attached well to the meshes, and strong beating was observed throughout the experimental period. The average fiber diameter of the scaffold is about 250 nm, well below the size of an individual cardiomyocyte. Hence the number of cell-cell contacts is maximized. Constructs with up to 5 layers could be formed without any incidence of core ischemia. The individual layers adhered intimately. Morphologic and electrical communication between the layers was established, as verified by means of histology and immunohistochemistry. Synchronized beating was also observed. CONCLUSIONS This report demonstrates the formation of thick cardiac grafts in vitro and the versatility of biodegradable electrospun meshes for cardiac tissue engineering. It is envisioned that cardiac grafts with clinically relevant dimensions can be created by using this approach and combining it with new technologies to induce vascularization.
منابع مشابه
Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملManufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملTissue Engineering in Dentistery
Introduction Perforation of maxillary sinus mucous membrane is of the most prevalent complication during open sinus lift surgery. Moreover, such complication can usually be managed by an absorbable membrane. As far as absorbable membranes are concerned, decellularized maxillary sinus mucous membranes, which is an extracellular matrix, can be used as a biologic scaffold and insulating membrane ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of thoracic and cardiovascular surgery
دوره 130 5 شماره
صفحات -
تاریخ انتشار 2005